OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

4753/1

Methods for Advanced Mathematics (C3)
Wednesday 18 JANUARY 2006 Afternoon 1 hour 30 minutes
Additional materials:
8 page answer booklet
Graph paper
MEI Examination Formulae and Tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72 .

Section A (36 marks)

1 Given that $y=(1+6 x)^{\frac{1}{3}}$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{y^{2}}$.

2 A population is P million at time t years. P is modelled by the equation

$$
P=5+a \mathrm{e}^{-b t}
$$

where a and b are constants.
The population is initially 8 million, and declines to 6 million after 1 year.
(i) Use this information to calculate the values of a and b, giving b correct to 3 significant figures.
(ii) What is the long-term population predicted by the model?

3 (i) Express $2 \ln x+\ln 3$ as a single logarithm.
(ii) Hence, given that x satisfies the equation

$$
2 \ln x+\ln 3=\ln (5 x+2)
$$

show that x is a root of the quadratic equation $3 x^{2}-5 x-2=0$.
(iii) Solve this quadratic equation, explaining why only one root is a valid solution of

$$
\begin{equation*}
2 \ln x+\ln 3=\ln (5 x+2) . \tag{3}
\end{equation*}
$$

4 Fig. 4 shows a cone. The angle between the axis and the slant edge is 30°. Water is poured into the cone at a constant rate of $2 \mathrm{~cm}^{3}$ per second. At time t seconds, the radius of the water surface is $r \mathrm{~cm}$ and the volume of water in the cone is $V \mathrm{~cm}^{3}$.

Fig. 4
(i) Write down the value of $\frac{\mathrm{d} V}{\mathrm{~d} t}$.
(ii) Show that $V=\frac{\sqrt{3}}{3} \pi r^{3}$, and find $\frac{\mathrm{d} V}{\mathrm{~d} r}$.
[You may assume that the volume of a cone of height h and radius r is $\frac{1}{3} \pi r^{2} h$.]
(iii) Use the results of parts (i) and (ii) to find the value of $\frac{\mathrm{d} r}{\mathrm{~d} t}$ when $r=2$.

5 A curve is defined implicitly by the equation

$$
y^{3}=2 x y+x^{2} .
$$

(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2(x+y)}{3 y^{2}-2 x}$.
(ii) Hence write down $\frac{\mathrm{d} x}{\mathrm{~d} y}$ in terms of x and y.

6 The function $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=1+2 \sin x$ for $-\frac{1}{2} \pi \leqslant x \leqslant \frac{1}{2} \pi$.
(i) Show that $\mathrm{f}^{-1}(x)=\arcsin \left(\frac{x-1}{2}\right)$ and state the domain of this function.

Fig. 6 shows a sketch of the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$.

Fig. 6
(ii) Write down the coordinates of the points A, B and C .

Section B (36 marks)

7 Fig. 7 shows the curve

$$
y=2 x-x \ln x, \text { where } x>0 .
$$

The curve crosses the x-axis at A, and has a turning point at B . The point C on the curve has x-coordinate 1. Lines CD and BE are drawn parallel to the y-axis.

Not to scale

Fig. 7
(i) Find the x-coordinate of A, giving your answer in terms of e .
(ii) Find the exact coordinates of B.
(iii) Show that the tangents at A and C are perpendicular to each other.
(iv) Using integration by parts, show that

$$
\int x \ln x \mathrm{~d} x=\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+c .
$$

Hence find the exact area of the region enclosed by the curve, the x-axis and the lines CD and BE.

8 The function $\mathrm{f}(x)=\frac{\sin x}{2-\cos x}$ has domain $-\pi \leqslant x \leqslant \pi$.
Fig. 8 shows the graph of $y=\mathrm{f}(x)$ for $0 \leqslant x \leqslant \pi$.

Fig. 8
(i) Find $\mathrm{f}(-x)$ in terms of $\mathrm{f}(x)$. Hence sketch the graph of $y=\mathrm{f}(x)$ for the complete domain $-\pi \leqslant x \leqslant \pi$.
(ii) Show that $\mathrm{f}^{\prime}(x)=\frac{2 \cos x-1}{(2-\cos x)^{2}}$. Hence find the exact coordinates of the turning point P .

State the range of the function $\mathrm{f}(x)$, giving your answer exactly.
(iii) Using the substitution $u=2-\cos x$ or otherwise, find the exact value of $\int_{0}^{\pi} \frac{\sin x}{2-\cos x} \mathrm{~d} x$.
(iv) Sketch the graph of $y=\mathrm{f}(2 x)$.
(v) Using your answers to parts (iii) and (iv), write down the exact value of $\int_{0}^{\frac{1}{2} \pi} \frac{\sin 2 x}{2-\cos 2 x} \mathrm{~d} x$.

